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The simple harmonic oscillator (SHO) with fractional damping is characterized by the
following second order differential equation:

.x þ x ¼ �eð ’xÞ1=3; e > 0; ð1Þ

where e is a positive parameter. Note that this equation is of odd parity, i.e., if x-� x; then the
equation is invariant except for a non-essential overall negative sign. Also, observe that the
damping term, on the right-side of Eq. (1), is equal to the velocity raised to the one-third power.
This expression is always real valued since the cube root of a real number has a real value with the
same sign as that number itself.
The purpose of this note is to show that all solutions to Eq. (1) are damped and oscillatory. The

method of first order averaging [1–3] is then used to calculate an approximation to this set of
solutions. Further, the analysis indicates that the system only executes a finite number of
oscillations before it reaches its equilibrium state. An estimate of this number is made.
Eq. (1) can be written as a system of two first order differential equations [1,2]

dx

dt
¼ y;

dy

dt
¼ �x � ey1=3: ð2Þ

The corresponding trajectories in the ðx; y ¼ dx=dtÞ phase space are determined by the solutions
to the equation

dy

dx
¼ �

x þ ey1=3

y

� �
: ð3Þ

It follows from Eq. (2) that a single equilibrium or fixed point exists at ð %x; %yÞ ¼ ð0; 0Þ: Note that
Eq. (3) is invariant under the transformation

x-� x; y-� y: ð4Þ
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Consequently, trajectories in the ðx; yÞ phase space have inversion through the origin symmetry
[2].
Consider the following Liapunov function for Eqs. (1) or (2) [4]:

V ðx; yÞ �
y2

2
þ

x2

2
: ð5Þ

This function is the energy integral for the undamped SHO and has the property

V ðx; yÞ > 0; xa0 and ya0: ð6Þ

Taking the time derivative of V ðx; yÞ and replacing ’x and ’y by the expressions in Eq. (2) gives
dV

dt
¼ y ’y þ x ’x ¼ �yðx þ ey1=3Þ þ xy ¼ �ey4=3: ð7Þ

Since e > 0; it follows that
dV

dt
p0; ð8Þ

from which it can be concluded that

Lim
t-N

x2 þ y2

2

� �
¼ 0: ð9Þ

Thus, all solutions, xðtÞ; of Eq. (1) eventually decrease to zero. The implication of this result is the
fixed point at ð %x; %yÞ ¼ ð0; 0Þ is globally stable.
The method of first order averaging [1–3] can now be applied to Eq. (1) to calculate an

analytical approximation to its oscillatory solutions. This solution is

xðtÞ ¼ aðtÞ cos½t þ fðtÞ�; ð10Þ

where the ‘‘amplitude’’ aðtÞ and ‘‘phase’’ fðtÞ are given as solutions to the following equations for
the particular problem given by Eq. (1):

da

dt
¼ �

e
2p

� �
a1=3

Z 2p

0

ðsin cÞ4=3 dc; ð11Þ

df
dt

¼ �
e
2pa

� �
a1=3

Z 2p

0

ðsin cÞ1=3 cosc dc: ð12Þ

These calculations are made under the requirement 0oe51: The integral, on the right-side of
Eq. (12), is zero. This follows from the fact that the integration limits can be changed from ð0; 2pÞ
to ð�p; pÞ: Over this range of c values, the integrand is odd; consequently, the integral is zero.
Therefore, it follows that

fðtÞ ¼ f0 ¼ constant: ð13Þ

It can be shown that [5]

ðsin cÞ4=3 ¼ c0 þ c1 cos 2cþ c2 cos 4cþ?; ð14Þ

where c0 ¼ 0:580; c1 ¼ �0:464; etc. Using this result, the integral in Eq. (11) can be evaluated to
obtain

da

dt
¼ �ðec0Þa1=3: ð15Þ
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The solution to Eq. (15), with the initial condition, aðtÞ ¼ a0; is

aðtÞ ¼ a0
tn � t

tn

� �3=2
; ð16Þ

where the ‘‘characteristic time’’, tn; is given by

tn ¼
3a2=3

2c0e
: ð17Þ

A closer examination of Eq. (16) shows that for times, t > tn; the amplitude aðtÞ is pure imaginary.
Physically, aðtÞ can always be selected to be non-negative and real [2,3]. Placing these two issues
together means that Eq. (16) should be rewritten as

aðtÞ ¼
a0

tn � t

tn

� �3=2
; 0ptptn;

0; t > tn:

8><
>: ð18Þ

Thus, the amplitude of the oscillator is zero for t > tn and as a result only a finite number of
‘‘cycles of oscillations’’ occur.
An estimate of the number of oscillation cycles, N; which take place before the amplitude goes

to zero, can be calculated. First, for 0oe51; the angular frequency of the free oscillations is [2,3]

oðeÞ ¼ 1þ OðeÞ: ð19Þ

Second, since the period is

TðeÞ ¼
2p
oðeÞ

¼ 2pþ OðeÞ ð20Þ

and because the oscillations stop after the time t ¼ tn; then

N �
tn

T
¼
3a
2=3
0

4pc0e
: ð21Þ

If the results of Eqs. (13) and (18) are substituted into Eq. (10), then the damped oscillations of
Eq. (1) are represented by the relation

X ðtÞ ¼
a0

tn � t

tn

� �3=2
cosðt þ f0Þ; 0ptptn;

0; t > tn:

8><
>: ð22Þ

It is also of interest that the only other known non-linear, damped oscillator for which a finite
number of oscillations occurs, is the Coulomb damped oscillator. An analysis of its solutions and
related behavior is given by McLachlan [6] and Mickens [2].
The work presented here is an extension of previous studies on the so-called non-linear

‘‘fractional oscillators’’ [7,8]. The equations modelling such systems either have terms in their
elastic forces which are fractional powers of the position x and/or also contain terms for the
damping which have fractional powers.
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